Birzeit University
Faculty of Engineering
Electrical Engineering Department
Network Analysis I - ENEE 232
First Hour Exam
6 March 2012 Instructors: Hussein Zeitawi \& Ashraf Al-Rimawi Time: 60 min

Student Name:
 ID Number:

Question \# 1:

From the circuit shown in figure 1, and Figure 2
a. The value of α constant
b. The value of μ constant

Fig 1

Fig 2

Question \# 2:

For Circuit shown in figure 3, Use Superposition Technique to find the value of $\boldsymbol{V}_{\boldsymbol{x}}$

Fig 3

Question \# 4:

For the circuit shown in Figure 4, Find $V_{o}(t)$ for $t>0$.

Fig 4

DEPARTMENT OF ELECTRICAL ENGINEERING

ENEE231: Network Analysis I
Final Exam
Date:16 July 2013 Time: 2 pm - 4.30pm - 150 minutes
Calculators must not be used to store text and/or formulae nor be capable of communication.
Invigilators may require calculators to be reset.
Instructors: Mr. Hakam Shehadeh \& Mr. Ashraf Al-Rimawi

Question One [10\%]

Find Vx using Nodal Analysis only.

Figure Q1

Question Two [20\%]
For the following circuit shown in figure Q 2 . Find V_{x}

Figure Q2

Question Three [15\%]

For the network in figure Q3.
1-compute the input source voltage Vs.
2-compute the total complex power supplied by the source.
3 - compute the input power factor.

Figure Q3

Question Four [20\%]

A three-phase positive sequence supplies 20KVA with power factor 0.6 lagging to parallel combination of Δ connected and Y-connected loads. The Y-connected uses 10KVA at reactive factor 0.6 lagging and has c-phase current of 25.7-j30.6 A
a. Find the a-phase line current
b. Find the impedance per phase of the Δ connected load
c. Find the magnitude of the line voltage
d. Draw the single phase equivalent for the a-phase

Question Five[15\%]

Find \boldsymbol{n} for maximum power supplied to the 80Ω load.

Figure Q5

Question Six [20\%]

Find V_{o} in the following circuit in Figure Q6

Figure Q6

Birzeit University

Faculty of Engineering Electrical Engineering Department

Network Analysis I ，ENEE 231
Final Exam
14 May 2012 Mr．Hussein Zeitawi \＆Mr．Ashraf Al－Rimawi Time： 150 min Student Name：

ID Number：

Instructions：

1．Closed book，closed notes，open－mind exam．
2．Write neatly and clearly for partial credit．
3．Cross out any material you don＇t want to be graded．
4．Work all problems in the exam booklets

Question \＃1（20 Marks）：For the circuit shown in figure 1，find $\mathbf{v}_{\mathbf{x}}$ using Nodal Analysis Only

Fig 1
Question \＃2（20 Marks＿10 each）：For the circuit as shown in figure 2

Fig2
a．Find i for $\mathrm{t} \geq 0$
b．Calculate i for $\mathrm{t}=2 \mathrm{sec}$ ，and $\mathrm{t}=5 \mathrm{sec}$

Question \#3 (20 Marks_10 each): The unbalanced -three phase loads shown in figure 3 is fed from balanced, positive (abc) sequence three phase Y-connected source, if $\mathrm{Z}_{\mathrm{A}}=$ $20 \angle 30^{\circ} \Omega, \mathrm{Z}_{\mathrm{B}}=60 \angle 0^{0} \Omega, \mathrm{Z}_{\mathrm{C}}=20 \angle-30^{0} \Omega$.

Fig 3
a. Calculate the reading of each wattmeter
b. Verify that the sum of the two wattmeter readings equals the total average power delivered to the load.

Question \#4 (20 Marks):

Three 100 Vrms loads are connected in parallel. Load 1 is a 50Ω resistor in series with an inductive reactance of 40Ω. Load 2 absorbs an average power of 500 W at 0.75 lagging power factor. Load 3 absorbs an apparent power of 600 VA at 0.9 lagging power factor. Assume the circuit is operating at 60 Hz . Compute the value of a capacitor that would correct the power factor to 1 if placed in parallel with the loads.

Question \#5 (20 Marks_10 each):

A) Find the impedance $\boldsymbol{Z}_{\boldsymbol{a} \boldsymbol{b}}$ in the circuit in figure 4 if $Z_{L}=200+j 150 \Omega$

Fig 4
B) For the circuit in figure 5 , find $\boldsymbol{v}_{\mathbf{0}}(\boldsymbol{t})$ using Source Transformation

